

A092237


Maximum number of intercalates in a Latin square of order n.


4




OFFSET

1,4


COMMENTS

An intercalate is a 2 X 2 subsquare of a Latin square. a(10) >= 125, a(11) >= 172, a(12) >= 324.


REFERENCES

I. Wanless, Private communication, 2003.


LINKS

Table of n, a(n) for n=1..9.
R. Bean, Critical sets in Latin squares and associated structures, Ph.D. Thesis, The University of Queensland, 2001.
K. Heinrich and W. Wallis, The maximum number of intercalates in a Latin square, Combinatorial Math. VIII, Proc. 8th Australian Conf. Combinatorics, 1980, 221233.
Index entries for sequences related to Latin squares and rectangles


FORMULA

a(2^n) = n^2(n1)/4; a(2^n1) = n(n1)(n3)/4


CROSSREFS

Cf. A091323, A090741.
Sequence in context: A199693 A166206 A040137 * A081987 A327972 A047709
Adjacent sequences: A092234 A092235 A092236 * A092238 A092239 A092240


KEYWORD

hard,nonn


AUTHOR

Richard Bean, Feb 17 2004


STATUS

approved



